1. Be sure that the belt has the tabs on the inner side: the belt has to run with the tabs oppositely facing the running direction;

2. Count the number of links and remove one link every two links at once.

3. For multiple belt drives, repeat the operation on all the grooves.

4. Install the belt as in “INSTALLATION” paragraph;

5. Move the engine forward to reduce the center distance;

6. Check the belt's length as previously shown;

If it is easy to move the engine, you might install the belt in the following way:

- Check the belt tension periodically and restore tension.
- As in any V-Belt drive, Acculink belts require to check for tension after 24 h of full load operating time. If the belt is not tight enough, restore the tension by removing some link.

Like conventional V-Belts, Accu-Link has power ratings similar to classical V-belts. Despite this, thanks to its high-temperature resistance and quiet and smooth running, Accu-Link is an alternative to classical rubber V-belts. Megadyne's Accu-Link is the Megadyne's link belt, created and developed as an alternative to classical V-belts in case of break. Unlike conventional V-Belts, Accu-Link can be rolled onto pulleys - no cord to break.
Main features and advantages:

- **EASY TO ASSEMBLE**
 Accu-Link can be assembled without any tool and in a matter of seconds.

- **EASY TO INSTALL**
 Accu-Link is pre-assembled in such a way that you only have to integrate the belt and the sheaves, running it in a turning pulley or a fixed one. This can be done in a very fast way and in a very easy manner.

- **SMALL SIZING VARIATION**
 All Accu-Link lengths are available in a large range of available sizes, making it easy to fit belts in any length just by changing the number of links. This is extremely useful when you need to change a belt length for a V-belt that is already installed.

- **EASY TO DISASSEMBLE**
 Accu-Link can be disassembled in a very easy and fast way. Removing links and taking the drive apart would take too long. Acculink can be disassembled in a very fast and easy way.

- **LOW COST FAST**
 Accu-Link can be bought at a cost lower than classical V-belts. Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **EASY TO MAINTAIN**
 Accu-Link can be easily maintained, making it a preferred choice for companies that need to maintain their drive systems. It is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH THERMAL RESISTANCE**
 Accu-Link can operate at high temperatures for an extended period. It is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH TEMPERATURE RESISTANCE**
 Accu-Link can operate at high temperatures, thanks to its state-of-the-art materials.

- **HIGH QUALITY**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH PRECISION**
 Accu-Link has been specifically designed to achieve the highest precision in the assembly and installation process. It provides a smooth and easier running compared to classical V-belts.

- **HIGH RESISTANCE TO HARSH ENVIRONMENT**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH RESISTANCE TO ENVIRONMENT**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH RESISTANCE TO VIBRATION**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH RESISTANCE TO VIBRATION**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.

- **HIGH SONIC RESISTANCE**
 Accu-Link is made of state-of-the-art materials, providing a smooth and easier running compared to classical V-belts.
CHOICE OF BELT SECTION

To choose between the sections, to find out the corrected power \(P_c\) it is first necessary to calculate:

\[
\text{Arc of contact correction factor } C_g = \frac{\text{arc of contact}}{\text{arc of contact correction factor } g}\n\]

where \(P_b\) is the power base of the belt and \(C_g\) is the correction factor as per following table.

\[
P_c = P_b \times F_s = 12 \times 1.2 = 14.4 \text{ kW}
\]

The belt number of drives is given by rounding up \(Q\) to the next higher integer number.

The final number of belts is:

The number of belts comes from the following formula:

DETERMINATION OF ACTUAL POWER RATING

Because of the high power, we can go for a C section, expecting more than one belt to be used.

The corrected power \(P_c\) is

\[
C = 0.98.
\]

\[
\text{Arc of contact}
\]

Calculation example

Calculation example

MACHINE DATA

Because of the high power, we can go for a C section, expecting more than one belt to be used.

\[
\text{Arc of contact correction factor } C_g = \frac{\text{arc of contact}}{\text{arc of contact correction factor } g}\n\]

\[
P_c = P_b \times F_s = 12 \times 1.2 = 14.4 \text{ kW}
\]

The belt number of drives is given by rounding up \(Q\) to the next higher integer number.

The final number of belts is:

The number of belts comes from the following formula:

DETERMINATION OF ACTUAL POWER RATING

Because of the high power, we can go for a C section, expecting more than one belt to be used.

The corrected power \(P_c\) is

\[
C = 0.98.
\]

\[
\text{Arc of contact}
\]

Calculation example

Calculation example

MACHINE DATA

Because of the high power, we can go for a C section, expecting more than one belt to be used.

\[
\text{Arc of contact correction factor } C_g = \frac{\text{arc of contact}}{\text{arc of contact correction factor } g}\n\]

\[
P_c = P_b \times F_s = 12 \times 1.2 = 14.4 \text{ kW}
\]

The belt number of drives is given by rounding up \(Q\) to the next higher integer number.

The final number of belts is:

The number of belts comes from the following formula:

DETERMINATION OF ACTUAL POWER RATING

Because of the high power, we can go for a C section, expecting more than one belt to be used.

The corrected power \(P_c\) is

\[
C = 0.98.
\]

\[
\text{Arc of contact}
\]
CHOICE OF BELT SECTION
To choose between the sections, to find out the corrected power \(P_c \) it is first necessary to calculate:

\[
P_c = P \times F_s
\]

The arc of contact is calculated as follows:

\[
\theta = 180 - (57 \times \frac{(D-d)}{l})
\]

The actual power rating \(P_a \) is given by the drive working conditions:

\[
P_a = P_b \times C_g
\]

Where \(P_b \) is the power base of the belt and \(C_g \) is the arc of contact correction factor as per following table.

Table 2: arc of contact correction factor \(C_g \)

<table>
<thead>
<tr>
<th>Rotational speed (1/min.)</th>
<th>10000</th>
<th>100</th>
<th>10</th>
<th>0,1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_g)</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
</tbody>
</table>

Calculation example

MACHINE DATA

- Drive sheave: 8" pulley
- Speed: 1100 rpm
- Power: 12 kW

Determination of actual power rating

\[
P_a = P_b \times C_g
\]

This means that the actual number of needed belts is 2.

CHOICE OF BELT SECTION

The corrected power \(P_c \) is

\[
P_c = P \times F_s
\]

Because of the belt power we are going to select a factor exceeding more than one belt to be used.

DETERMINATION OF ACTUAL POWER RATINGS

For the selection of \(F_s \) and \(C_g \):

- \(F_s \) depends on the service hour's daily hour of operation.
- \(C_g \) depends on the engine and type of engine.

\[
F_s = \begin{cases} 0.75 & \text{for 1,200 hours} \\ 0.80 & \text{for 2,400 hours} \\ 0.85 & \text{for 3,600 hours} \\ 0.90 & \text{for 4,800 hours} \\ 0.95 & \text{for 6,000 hours} \\ 1.00 & \text{for 7,200 hours} \end{cases}
\]

DETERMINATION OF NUMBER OF BELTS

The final number of belts is given by rounding up \(Q \) to the next higher integer number.

\[
Q = \frac{P_c}{P_a}
\]

This means that the actual number of needed belts is 2.

Table 3: service factor \(F_s \)

<table>
<thead>
<tr>
<th>Applications</th>
<th>MARK ADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine industry</td>
<td>Higher resistance to salty and greasy environment</td>
</tr>
<tr>
<td>Mechatronic and washing machines</td>
<td>Reduced noise, reduced vibration</td>
</tr>
<tr>
<td>Food industry</td>
<td>Enhanced resistance to food environment</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Enhanced resistance to typical age environment</td>
</tr>
<tr>
<td>Rolling conveyor</td>
<td>Easier and quicker to install, reduced energy consumption</td>
</tr>
<tr>
<td>Glass industry</td>
<td>No erosion</td>
</tr>
<tr>
<td>Tile and marble conveyor</td>
<td>Enhanced resistance to food environment</td>
</tr>
</tbody>
</table>

Table 4 - Z/3L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 5 - A/4L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 6 - B/5L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 7 - C profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 8 - H/6L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 9 - I/7L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 10 - J/8L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 11 - K/9L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table 12 - L/10L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>500</th>
<th>1500</th>
<th>2500</th>
<th>3500</th>
<th>4500</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a) (kW)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
CHOICE OF BELT SECTION

Technical Calculation

Pc = P × Fs

\[g = 180 - (57 \times \frac{(D-d)}{l}) \]

The arc of contact is calculated as follows:

Table 2: arc of contact correction factor C

The actual power rating Pa is given by the drive working conditions:

DETERMINATION OF ACTUAL POWER RATING

\[Pa = Pb \times C \]

Symbol Unit Definition Symbol

C contact correction factor

g 180° 175° 170° 165° 160° 155° 150° 145° 140° 135° 130° 125° 120° 115° 110° 105° 100°

Arc of contact correction factor as per following table.

Table 1: belt section selection

Power (kW) (Pc)

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

Trasmittable Power

Table 3: service factor Fs

Applications

MACHINE DATA

Calculation example

The final number of belts is given by rounding up Q to the next higher integer number.

DETERMINATION OF NUMBER OF BELTS

\[Q = \frac{Pc}{Pa} \]

Table 4: number of belts selection

CHOICE OF BELT SECTION

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

Applications

MACHINE DATA

Calculation example

The final number of belts is given by rounding up Q to the next higher integer number.

DETERMINATION OF NUMBER OF BELTS

\[Q = \frac{Pc}{Pa} \]

Table 4: number of belts selection

CHOICE OF BELT SECTION

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

Applications

MACHINE DATA

Calculation example

The final number of belts is given by rounding up Q to the next higher integer number.

DETERMINATION OF NUMBER OF BELTS

\[Q = \frac{Pc}{Pa} \]

Table 4: number of belts selection

CHOICE OF BELT SECTION

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

Applications

MACHINE DATA

Calculation example

The final number of belts is given by rounding up Q to the next higher integer number.

DETERMINATION OF NUMBER OF BELTS

\[Q = \frac{Pc}{Pa} \]

Table 4: number of belts selection

CHOICE OF BELT SECTION

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

Applications

MACHINE DATA

Calculation example

The final number of belts is given by rounding up Q to the next higher integer number.

DETERMINATION OF NUMBER OF BELTS

\[Q = \frac{Pc}{Pa} \]

Table 4: number of belts selection
To choose between the sections, to find out the corrected power (P_c) it is first necessary to calculate:

$$P_c = P \cdot F_s$$

where F_s is a factor that depends on the center distance, and P is the power base of the belt.

The arc of contact is calculated as follows:

$$\text{Arc of contact} = 180 - \left(57 \times \left\lfloor \frac{(D-d)}{l} \right\rfloor \right) \text{ degrees}$$

where D is the pitch diameter of the bigger pulley, d is the pitch diameter of the smaller pulley, and l is the center distance.

The actual power rating (P_a) is given by the drive working conditions:

$$P_a = P_b \cdot C_g$$

where P_b comes from table 7.

C_g is the arc of contact correction factor as per following table.

<table>
<thead>
<tr>
<th>Application</th>
<th>Drive working conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans, pumps, compressors</td>
<td>Normal use</td>
</tr>
<tr>
<td>Metal and wood working machines</td>
<td>Heavy use</td>
</tr>
<tr>
<td>Marine industry</td>
<td>Heavy use</td>
</tr>
<tr>
<td>Rolling conveyor</td>
<td>Light conveyors</td>
</tr>
</tbody>
</table>

Applications

The corrected power P_{c} can be calculated with the following formula:

$$P_{c} = P \cdot F_s$$

Because of the high power, we can go for a C section, expecting more than one belt to be used.

Table 3: Service factor F_s

<table>
<thead>
<tr>
<th>POWER (kW)</th>
<th>0,00</th>
<th>0,10</th>
<th>0,20</th>
<th>0,30</th>
<th>0,40</th>
<th>0,50</th>
<th>0,60</th>
<th>0,70</th>
<th>0,80</th>
<th>0,90</th>
<th>1,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE FACTOR</td>
<td>1,00</td>
<td>0,99</td>
<td>0,98</td>
<td>0,96</td>
<td>0,95</td>
<td>0,93</td>
<td>0,92</td>
<td>0,90</td>
<td>0,89</td>
<td>0,87</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Calculation example

MACHINE DATA

- Drive sheave: 8" (203 mm)
- Speed: 1100 rpm
- Power: 12 kW
- Center distance: 38" (965 mm)
- Type of engine: 1
- Application: compressor
- Working hours: 8-16 per day
- Daily operating hours: 4

CHOICE OF BELT SECTION

Because of the high power, we can go for a C section, expecting more than one belt to be used.

DETERMINATION OF ACTUAL POWER RATING

$$P_a = P_b \cdot C_g = 8 \cdot 0,98 = 7,84 \text{ kW}$$

$$Q = \frac{P_c}{P_a} = \frac{14,4}{7,84} = 1,84$$

DETERMINATION OF NUMBER OF BELTS

The corrected number of belts is

$$\frac{Q}{2} \cdot \frac{Q}{2} = \frac{1,84}{2} \cdot \frac{1,84}{2} = 1,38$$

This means that the actual number of needed belts is 2.

Table 4 - $Z/3L$ profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5 - $A/4L$ profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6 - $B/5L$ profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7 - C profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8 - Z/3L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9 - A/4L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 10 - B/5L profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 11 - C profile

<table>
<thead>
<tr>
<th>Belt speed (RPM)</th>
<th>0-8</th>
<th>8-16</th>
<th>16-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3. Move the engine forward to reduce the center distance;
2. Check the belt's length as previously shown;
3. Always make sure that belts look pretty tight and tabs are still in the correct position.

As in any V-Belt drive, Acculink belts require to check for tension after 24 h of full load operating time. If the belt is not tight
Retensioning

<table>
<thead>
<tr>
<th>Belt series</th>
<th>Length (inches)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/3L</td>
<td>32</td>
<td>810</td>
</tr>
<tr>
<td>A/4L</td>
<td>33</td>
<td>840</td>
</tr>
<tr>
<td>B/5L</td>
<td>34</td>
<td>860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt series</th>
<th>Length (inches)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/3L</td>
<td>32</td>
<td>810</td>
</tr>
<tr>
<td>A/4L</td>
<td>33</td>
<td>840</td>
</tr>
<tr>
<td>B/5L</td>
<td>34</td>
<td>860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt series</th>
<th>Length (inches)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/3L</td>
<td>32</td>
<td>810</td>
</tr>
<tr>
<td>A/4L</td>
<td>33</td>
<td>840</td>
</tr>
<tr>
<td>B/5L</td>
<td>34</td>
<td>860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt series</th>
<th>Length (inches)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z/3L</td>
<td>32</td>
<td>810</td>
</tr>
<tr>
<td>A/4L</td>
<td>33</td>
<td>840</td>
</tr>
<tr>
<td>B/5L</td>
<td>34</td>
<td>860</td>
</tr>
</tbody>
</table>

NOTE: Unlike conventional V-Belts, Accu-Link can be rolled onto pulleys - no cord to break.
1. Set the engine in mid position of its adjustment range and mark this position clearly;
2. Check the belt's length as previously shown;
4. Install the belt as in "INSTALLATION" paragraph;

2. Fit the belt in the nearest groove of the smallest sheave and then roll the belt onto the larger sheave. For multiple belts drive,

As in any V-Belt drive, Acculink belts require to check for tension after 24 h of full load operating time. If the belt is not tight

1. Be sure that the belt has the tabs on the inner side: the belt has to run with the tabs oppositely facing the running direction;

Megadyne can supply open end Acculink in carton boxes or endless belts in light carton sleeves.

20 for C section to get the
24 for Z/3L, A/4L and B/5L

1. Pull the belt tight around
2. Count the number of links
3. Rotating the belt by 90° reverse the belt upside
3. Ensure that tab will

NOTE:
Unlike conventional V-Belts, Accu-Link can be rolled onto pulleys - no cord to break.

With one roll of Accu-Link it is possible to get any length of classical
Accu-Link has power ratings similar to classical V-belts.

Main features and advantages:
- HIGH TEMPERATURE RESISTANCE
- HIGH RESISTANCE TO ENVIRONMENT
- QUIET AND SMOOTH RUNNING
- HIGH RESISTANCE TO HARSH ENVIRONMENT
- HIGH POWER RATE
- EASY TO ASSEMBLE
- Combines superior strength and durability with quick and easy manufacturing process allow superior performances and finishing manufacturing process allow superior performances and finishing

Manufacturing:
- The belt is delivered already assembled and pre-tensioned to reduce the elongation especially during the early stage of its start-up.
- The belt is produced with the best quality raw material and with the most advanced manufacturing process.
- It is manufactured under ISO 9001:2000 certification system.

Temperature range:
- Service temperature range -25 °C / +80 °C (-13 °F / 176 °F)

Applications:
- Standard roll lengths (ft) 25-100 25-100 25-100 25-50